3.10.61 \(\int \frac {x^5}{\sqrt {16-x^4}} \, dx\) [961]

Optimal. Leaf size=29 \[ -\frac {1}{4} x^2 \sqrt {16-x^4}+4 \sin ^{-1}\left (\frac {x^2}{4}\right ) \]

[Out]

4*arcsin(1/4*x^2)-1/4*x^2*(-x^4+16)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {281, 327, 222} \begin {gather*} 4 \text {ArcSin}\left (\frac {x^2}{4}\right )-\frac {1}{4} x^2 \sqrt {16-x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/Sqrt[16 - x^4],x]

[Out]

-1/4*(x^2*Sqrt[16 - x^4]) + 4*ArcSin[x^2/4]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^5}{\sqrt {16-x^4}} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {x^2}{\sqrt {16-x^2}} \, dx,x,x^2\right )\\ &=-\frac {1}{4} x^2 \sqrt {16-x^4}+4 \text {Subst}\left (\int \frac {1}{\sqrt {16-x^2}} \, dx,x,x^2\right )\\ &=-\frac {1}{4} x^2 \sqrt {16-x^4}+4 \sin ^{-1}\left (\frac {x^2}{4}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 37, normalized size = 1.28 \begin {gather*} -\frac {1}{4} x^2 \sqrt {16-x^4}-4 \tan ^{-1}\left (\frac {\sqrt {16-x^4}}{x^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/Sqrt[16 - x^4],x]

[Out]

-1/4*(x^2*Sqrt[16 - x^4]) - 4*ArcTan[Sqrt[16 - x^4]/x^2]

________________________________________________________________________________________

Maple [A]
time = 0.27, size = 24, normalized size = 0.83

method result size
default \(4 \arcsin \left (\frac {x^{2}}{4}\right )-\frac {x^{2} \sqrt {-x^{4}+16}}{4}\) \(24\)
elliptic \(4 \arcsin \left (\frac {x^{2}}{4}\right )-\frac {x^{2} \sqrt {-x^{4}+16}}{4}\) \(24\)
risch \(\frac {x^{2} \left (x^{4}-16\right )}{4 \sqrt {-x^{4}+16}}+4 \arcsin \left (\frac {x^{2}}{4}\right )\) \(29\)
meijerg \(\frac {4 i \left (\frac {i \sqrt {\pi }\, x^{2} \sqrt {1-\frac {x^{4}}{16}}}{4}-i \sqrt {\pi }\, \arcsin \left (\frac {x^{2}}{4}\right )\right )}{\sqrt {\pi }}\) \(38\)
trager \(-\frac {x^{2} \sqrt {-x^{4}+16}}{4}+4 \RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\RootOf \left (\textit {\_Z}^{2}+1\right ) \sqrt {-x^{4}+16}+x^{2}\right )\) \(45\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(-x^4+16)^(1/2),x,method=_RETURNVERBOSE)

[Out]

4*arcsin(1/4*x^2)-1/4*x^2*(-x^4+16)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 44, normalized size = 1.52 \begin {gather*} \frac {4 \, \sqrt {-x^{4} + 16}}{x^{2} {\left (\frac {x^{4} - 16}{x^{4}} - 1\right )}} - 4 \, \arctan \left (\frac {\sqrt {-x^{4} + 16}}{x^{2}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-x^4+16)^(1/2),x, algorithm="maxima")

[Out]

4*sqrt(-x^4 + 16)/(x^2*((x^4 - 16)/x^4 - 1)) - 4*arctan(sqrt(-x^4 + 16)/x^2)

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 33, normalized size = 1.14 \begin {gather*} -\frac {1}{4} \, \sqrt {-x^{4} + 16} x^{2} - 8 \, \arctan \left (\frac {\sqrt {-x^{4} + 16} - 4}{x^{2}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-x^4+16)^(1/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(-x^4 + 16)*x^2 - 8*arctan((sqrt(-x^4 + 16) - 4)/x^2)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.93, size = 78, normalized size = 2.69 \begin {gather*} \begin {cases} - \frac {i x^{6}}{4 \sqrt {x^{4} - 16}} + \frac {4 i x^{2}}{\sqrt {x^{4} - 16}} - 4 i \operatorname {acosh}{\left (\frac {x^{2}}{4} \right )} & \text {for}\: \left |{x^{4}}\right | > 16 \\\frac {x^{6}}{4 \sqrt {16 - x^{4}}} - \frac {4 x^{2}}{\sqrt {16 - x^{4}}} + 4 \operatorname {asin}{\left (\frac {x^{2}}{4} \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(-x**4+16)**(1/2),x)

[Out]

Piecewise((-I*x**6/(4*sqrt(x**4 - 16)) + 4*I*x**2/sqrt(x**4 - 16) - 4*I*acosh(x**2/4), Abs(x**4) > 16), (x**6/
(4*sqrt(16 - x**4)) - 4*x**2/sqrt(16 - x**4) + 4*asin(x**2/4), True))

________________________________________________________________________________________

Giac [A]
time = 1.11, size = 23, normalized size = 0.79 \begin {gather*} -\frac {1}{4} \, \sqrt {-x^{4} + 16} x^{2} + 4 \, \arcsin \left (\frac {1}{4} \, x^{2}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-x^4+16)^(1/2),x, algorithm="giac")

[Out]

-1/4*sqrt(-x^4 + 16)*x^2 + 4*arcsin(1/4*x^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {x^5}{\sqrt {16-x^4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(16 - x^4)^(1/2),x)

[Out]

int(x^5/(16 - x^4)^(1/2), x)

________________________________________________________________________________________